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Abstract

The objective of this work is to address a number of matherabénd computational is-
sues critical to the development of a robust multi-lengtidesand multi-stage deformation
process design simulator for the control of microstructeasitive properties in aircraft
manufacturing applications. As part of the research effouitiple technical developments
are being accomplished. An efficient framework for accuyadssessing the effect of un-
certainty in process and material parameters, in initiabttions and in the microstructure
has been developed. A spectral polynomial chaos framewskkedl as a novel support
space method have been developed for analyzing uncertaintgtal forming problems.
On the meso-scale, robust statistical learning technigsegell as gradient based methods
have been formulated for process sequence selection aighaésighly optimized syn-
thetic microstructures. Maximum entropy concepts havae nsed to develop an algorithm
for efficient reconstruction of microstructure classesgsi limited number of microstruc-
ture realizations. It is strongly believed that these adedntechniques can drastically
improve process and material predictions in critical congous.

1 Statusof effort

Substantial progress has been made in the achievement pfdjext objectives in the
second year of this project. Particular contributions avefly summarized below with
more details given in the provided references.

1.1 Development of a novel probabilistic framework for analysis and
design of metal forming processes[1]

This work introduces algorithms for quantifying uncertgipropagation in finite deforma-
tion problems. The first algorithm is based on the the SpkStachastic Finite Element
Method (SSFEM). A spectral expansion of the current configon of a deforming body
is proposed using Legendre chaos expansions to comput®ttastic deformation gradi-
ent which is in turn used to compute the stochastic analoffseofarious quantities which
appear in large deformation analysis. A total Lagrangigmagch to the stochastic large
deformation is presented. The second algorithm is based fonte element represen-
tation of the support space of the random variables. An elamgnsidering the effect
of uncertainty in the state variable on the response of adgg@eous tension specimen
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Figure 1:Initial and final mean configuration for deterministic problem (left). Meagnter) and

standard deviation (right) of load versus displacement. One simulationléstalprovide complete
probabilistic description of the propagation of uncertainty (here in the initiatenial state) during

the deformation process.
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Figure 2: Stochastic simulation of a cylinder upsetting process with randomness initta in
radius and the die workpiece friction. Initial and final mean configuratiieft). Mean (center)
and standard deviation (right) of the force versus stroke for the upsettogeps. Initial and final
mean configurations for the cylinder upsetting process (right).

modeled using SSFEM is shown in Fig. 1. An example of open aligifig under ran-
dom preform shape and die-workpiece friction modeled utiegsupport space method is
shown in Fig. 2. Note that the support method provides thergiatl of full probabilistic
analysis of complex deformation (and other continuum palsed — see [2]) systems using
legacy software for deterministic analysis of the undadyphysical mechanisms (e.g. the
deterministic 3D forming computational design simulatoder development [3]).

1.2 Development of a multiscale microstructuredesign framework for
polycrystalline materials

Many engineering materials are polycrystalline in natund ¢he presence of crystallo-
graphic characteristics like texture and misorientatiaffiscts several important physical
properties. Deformation process design for control of ostiucture sensitive properties
involves development of a multi-scale tool where it woulddwmssible to design required
process sequence and macroscopic process parametersddieeform shapes, forging
velocities, etc.) [3]. In the second year of this project,deenonstrated innovative compu-
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tational techniques including statistical learning, reetliorder optimization [4], and multi-
scale sensitivity analysis for designing deformation peses to tailor microstructures to
achieve desired properties. Key recent developmentssteel Ibelow:
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Figure 3:A schematic of the statistical learning driven microstructure feature seleatidrdesign
algorithm.

Initial microstructure

e A toolbox for evaluating strength of polycrystalline mistauctures based on image
meshing and multi-scale homogenization techniques [5, 6]:

We have recently developed tools for evaluating large rstna¢chanical response
from 2D and 3D polycrystalline microstructures. Using rogtructural images and
the single crystal constitutive laws as input, the tool carubed by the forming in-

dustry to identify processing stages that would fine-tuegtioperties of microstruc-
tures. Statistical learning based methods have been gegkto automate decision
making. These design solutions can be used in conjunctitngvadient optimiza-

tion schemes for optimizing microstructure-sensitivepambies. We have included
meshing capabilities of the NIST software OOF-2 and pdrttige element process-
ing tools. The method of multi-scale homogenization in tugé strain regime is
utilized to calculate the stress-strain response of mikrotires consisting of aggre-
gates of grains. The key goals of this tool is to provide eagia with a user-friendly
yet powerful environment for conducting virtual tests withicrostructural images
with the goal of designing microstructures with desireésgth.

e Optimal selection of textural and stereological featuigagistatistical learning tech-
niques [7, 8, 9, 10]:

Since material behavior is determined by its microstrugtitris a problem of inter-
est to evaluate the best microstructure that is suited faracplar application. A
key problem is identification of the set of features suitdblea material used in a
particular application and thus, also identify the proesshat would lead to such
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features. We employ statistical learning tools for expigrihe feature-property de-
sign space and thus, unearth the best microstructures ap@ication. Through mi-
crostructure interrogation schemes based on polycrykatipity theory, we create
databases that explore a large range of anisotropic prepaxthievable in polycrys-
talline microstructures through thermo-mechanical pset®. The schematic of the
computational design scheme is presented in Fig. 3.

1.3 Information-theoretic microstructure reconstruction from avail-
able statistical infor mation

Microstructures can be considered as realizations of eoramatocess. The knowledge of
this random process is limited since we are provided onl aiset of features that the
microstructure exhibits. Our task lies in reliably predigtthe class of microstructures
from this truncated description. Our interest also liesbtaming property statistics of the
microstructure of interest. In obtaining the samples gateer using this random process,
we use the principle of maximum entropy [11].
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Figure 4:(a) Samples of microstructure reconstructed using two-point correldtinction as well

as lineal path functions. The statistics of elastic properties that are obtainsdaan (b) Sam-
ples of microstructure reconstructed using two-point correlation functiime statistics of elastic
properties that are obtained is also shown.

As a demonstration we show the reconstruction of one-dirneakhard-rods: Ana-
lytical expressions are available for two-point and linpath correlation functions of 1d
hard rod structures. Two means of reconstructions are @ered in this section: (i) Re-
constructing hard-rods from two-point correlation funas alone (ii) Reconstructing hard-
rods from two-point and lineal path functions. Samples ohacl rods and their property
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statistics are shown in Figure 4. The statistics of propsitiearly shows that in the case of
incorporating more amount of information (connectivitygarmation in the form of lineal
path functions), the statistics are more sharp indicatiegctass of microstructures satisfy-
ing this condition is more profound.

A reconstruction of microstructure with short range cateins is shown in Fig. 5.
Herein, we assume that the reconstructed microstructueas@ropic and homogeneous.
Some examples of such materials include porous media, nagdwolymerized plastics,
and other. Our aim is to reconstruct these materials fromn tive-point correlation func-
tions. Figure 5 shows some samples of porous materials wiht sange order that are
reconstructed using the MAXENT scheme and the associaastieproperty statistics.
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Figure 5:Some samples of materials with short range order reconstructed-a32 grid.

We plan to explore the utility of this MAXENT-based reconstiion of microstructure
classes in the context of a stochastic multiscale analysislasign. For example, the vari-
ability of the initial material state discussed in the exsergf Section 1.1 (refer to Fig. 1)
can be obtained from a maximum entropy analysis using a fmiteber of experimental
realizations of the polycrystal microstructure. Preliariy algorithms for such problems
are discussed in [12].
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5 Trangtions

While no immediate commercialization plans are in placelierdeveloped computational
mathematics technologies, we strongly believe that thairsition to immediate needs of
AFRL and industrial partners is forthcoming.

6 New Discoveries

(a) Innovative statistical algorithms for exploring pres#structure/property relations; (b)
The first techniques reported for full-probabilistic madglof deformation processes; (c)
the first multiscale process design simulator being deeslop
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